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LETTER TO THE EDITOR 

On a classical constrained system and its quantum 
mechanical counterpart 

H Huber and H Biittner 
Physikalirhes Instilut. Univenill  Bayreuth, W-8580 Bayreulh. Federal Republic of 
Germany 

iieceived 53 iviarch iG2, in iinai fom U juiy i99i 

Abstract. In this letter we discuss a non-integrable system of three wupled anhamanic 
mcillalon with cenain wnslraints, so that it is transformed info an integrable one. After 
having quantized the syslem with constraints and the classically equivalent unwnstrained 
integrable system using the %w algolithm and the EBK quanlization methad, respectively, 
the equivalence of lhe WO quantization procedures is shown by aplicitly performing lhe 
d ~ i i o n  io ihr: physicai subspace on ihe quanium ievei. 

The interest in constrained systems is due to the fact that they can be related to 
systems with a local gauge invariance since both are described by singular Lagrangians. 
The freedom to choose a gauge is intimately related to the existence of unphysical 
degrees of freedom making the quantization of such systems extremely difficult. This 
results from the fact that by fixing the gauge in order to get rid of the unphysical 
modes one may destroy the relativistic covariance of the theoly (see e.g. [l]). 

In order to introduce the topic and to lix the notation we give a brief sketch 
of the most important contributions to the quantization of systems with constraints. 
According to Dirac we call a constraint T, first class, if its Poisson brackets (denoted 
in the following as { , )) - .  with all the other constraints vanish at least weakly, that is 

{T,,T@l = c;pq for all p and y (1) 

where the C;, are called the structure coefficients, which may depend on the phase 
space variables. Constraints for which (1) does not hold are called second class. 

The efforts to quantize systems with constraints, started with the work of Dirac in 
i95G ii,3j. in Dirac's canonicai quantization method the Poisson brackets of ciassicai 
mechanics are replaced by quantum commutators (denoted in the following as [ , I ) .  
Subsequently the quantum analogues !f', of the classical first-class constraints T, are 
imposed as quantum operators on the physical states: 

{A,B)-i[A,L?] ?', Iphys)=O.  (2) 

One of the difficulties arising in this quantization procedure is that the first-class 
character of the constraints is not necessarily preserved on the quantum level, Le. 
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due to the fact that the structure coefficients C& become operator-valued. Obviously 
the problem turns out to be even more severe, if second class constraints are 
considered. One way to circumvent this lies in using Dirac brackets instead of Poisson 
brackets, since by definition the Dirac brackets of all constraints with one another 
vanish strongly. But among other reasons operator-ordering problems prevent the 
general applicability of the method (cf [4]). 

Another approach proposed by Faddeev [5] consists in extracting first the true, 
gauge-invariant degrees of freedom of the theory with the help of additional gauge 
constraints n,, called subsidary conditions. In a second step one performs a 
path-integral quantization, where 6-functions of both the original and the gauge 
constraints occuring in the measure determine the restriction to the physical paths. 
This formalism was generalized by Senjanovik [6] to systems including second-class 
constraints. The main disadvantage of this quantization procedure is the appearance 
of the constraints in the measure of the path integral destroying the relativistic 
covariance of the theory. 

In order to overcome the problems in quantizing systems with constraints Batalin, 
Fradkin and Vilkovisky (BFV) developed an operator quantization method, which 
neither depends on operator ordering nor fails in yielding a non-unitary or relativistic 
non-covariant S-matrix [7-lo]. An excellent review of the BFV approach is given 
by Henneaux [ll]. The main property of the method is that on the one hand the 
phase space is enlarged to permit relativistic covariance by treating the Lagrange 
parameters as dynamical variables, and on the other hand the number of physical 
degrees of freedom is reduced through the introduction of ghost variables obeying 
the opposite quantum statistic as the original variables and thus, loosley speaking, 
counting as negative degrees of freedom [4,11]. 

BFV quantization provides a powerful tool to quantize a system with constraints 
preselving its constrained nature on the quantum level. In order to test this method 
and to get a somewhat deeper understanding we demonstrate in a first step for a 
simple model how the restriction of the Hilbert space in the BFV algorithm works and 
how it related to the classical case. The essential property of our system will be that 
classically the imposion of a constraint causes it to turn from a non-integrable system 
to an integrable one thus becoming exactly solvable. We can therefore quantize the 
system directly and compare the two ways of quantization. The system considered 
consists of three coupled one-dimensional quartic oscillators with a constraint T and 
the Lagrangian 

- 
(4) 

- 
L = t ( 4 2  + fjzz + Q32) - V(9) - P T ( 4 )  

with 
- 
V(9) = 9; + c24; + c39; + c49:9: + (24 - c4)4:9: + [a - (c2 + c3)ln:n: 

and 
- 
T ( 9 )  = 92 - 9 3 .  

In order to arrive at a Hamiltonian formulation of the problem, we forget about 
the constraint and interpret the Lagrange parameter p as a dynamical variable 
with canonical conjugated momentum p, .  A Legendre transformation in the eight- 
dimensional phase space formally yields 

- 
H = ;(Pi + P: + P:)  + bPP + V(9) + P T ( 9 )  



Letter to the Editor L1113 

and 

where Tp is now a primary constraint arising through the absence of a ldnetic term 
belonging to the dynamical variable p in (4). Since the Poisson bracket of Tp with 
H does not vanish, the demand on Tp to be zero for all times leads to a secondary 
mnstraint. The so-called Dirac-Bergmann algorithm [3,4,12] describes how this 
secondary constraint (and eventually tertiary constrains, etc) are to be handled in 
order to arrive at a new Hamiltonian Hu together with a complete set of constraints, 
that is each having vanishing Poisson brackets with H,. In our case these are a 
first-class constraint (7" = Tp) and two second-class constraints (Tz,  a = 1,2): 

- 

Hu = j ( P ;  + P: + P:) t bPP + v,(q) (5) 

with 

= n: + (2% - c2)424 + c34; + (24 - c4)41z(q: + s:, + [a - (c2 + %)ln:s: 
\ -2, ~ - :i;I: - c4jq; + (e3  - ~ ~ , y ~ 1 q ~ q ~  

T" - TI = p ,  

{T' ,  Hu) = 0 = {T', T') 

but 

I - 42 - 43 T' = P Z  - ~3 

{ T t ,  Hu) = 0 

{ T ~ , T ~ ) = 2 6 , 8  a , p = 1 , 2 .  

In our simple example the reduction of the phase space can be done explicitly by 
carrying out the canonical transformation (qi,p,pi,p,,) -+ (Qi,Q,,Pi,P,,), i = 
1,. . . ,3, generated by 

s = 41P1 + PP* + %P2 t P3)q2 + 4, - Pds ,  Jz Jz 
which yields 

H ,  = !j(P; + P: + P:) + QPP@ + QI + 16Qi + [16 - ( c Z  - c,)]Q; t 12Q:Q: 

+2(18-c4)Q;Q:+ (5c3-c2 -32)Q:Q:+2(c,-c,)Q~Q: (6) 

T" - T' = P,, T;' = Q3 2 - p3. 

On the physical subspace the constraints are valid for all times and therefore the 
system is described by 

H* = i( 2 P: + P:) + Qj + 12Q:Q: t 16Q: 

F = -Q2P: + Q,P~Pz + Q:Qz(fJQ: + 4Q:). 

(7) 

which is integrable 1131 due to the existence of a second integral of the motion 

(8) 
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So far the classical system is considered and our calculation shows that the system 
H ,  in eight-dimensional phase space together with the constraints T', T;' and T;' is 
equivalent to the unconstrained system H* in four-dimensional phase space, reflecting 
the fact that each first-class constraint reduces the dimension of the phase space by 
two and each second-class constraint reduces it by one. 

Before we determine the quantum version of the constrained system Hu we want 
to calculate the quantum mechanical energy eigenvalues of the unconstrained system 
H*. This can be done using the Einstein-Brillouin-Keller (EBK) quantization rule 
[15-17] 

I h  = +, + T) k = l,.. . , N  (9) 

for an N-dimensional integrable, but not necessarily separable system. The nk are 
integers and the ak are the Maslov indices belonging to the kth irreducible closed 
path by means of which the kth action variable I, is defined: 

Here F is an N-dimensional vector containing the N constants of motion and 
y, stands for the kth irreducible closed path on the N-torus [18]. For the two- 
dimensional system H* the Maslov indices al and a2 are equal to 2 [19] and the 
discrete energy values are given by 

(11) 1 En,", = H * ( I , ,  12) = H*[ti(n1 + ;),ti(n, + I,] . 
Figure 1 shows the energy eigenvalues of the system H* up to E = 100. There are 
no lower eigenvalues for higher quantum numbers nl, n2 since it can be shown that 
a E ( n k , n , ) / O n k  > 0 for k # 1 ,  k , l  = 1,2. 

With this result in mind we now turn to the original problem, i.e. the quantization 
of the constraint system (5). As mentioned at the beginning, BFV quantization of 
constrained systems requires the introduction of some extra degrees of freedom 
including ghosts. In particular [SI for each of the constraints there is one (bosonic) 
Lagrange multiplier X with conjugate momentum 7 ~ ,  one (fermionic) cononical 
conjugated ghost pair (C, P )  and one (fermionic) anti-ghost pair (P,c) .  Furthermore, 
since the construction of the gauge algebra of a constraint system strongly depends on 
the first-class character of the constraints [SI, for each of the second-class constraints 
being at hand one canonical conjugated pair of (bosonic) auxilialy variables (c , q) 
is needed in order to convert the second-class constraints into effectively first- 
class ones [lo]. Thus our enlarged phase space (Z ,n )  becomes 15dimensiona~ 
(i = 1,2,3, a = 1,2): 

c = ( q i , p ,  A', A; ,E;,c',  P',C::, P::) 
n = ( P , , p , , T ' , c , q , ,  I! , , p-u ci, ,). 

From now on all commutators are to be understood as supercommutators in the sense 
of 

(12) [A,  B] = AB - (-1) L A ' B B A  
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E" = 31.6486 
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Figure 1. The numerically mact eigenvalues of the system H* up to E = 1W (h = 1). 
The quantum numbers nk , k = 1,2, mrrespond to the klh irreducible dosed path on 
the 2-torus (see text). Eigenvalues belonging Lo the Same nk ale connected bj dotted Lines 
and ordered bj increasing nl boom the bttom Lo the top. Ihe ruSt values of E,,,,, are: 

E1.o = 4.6673 E2,o = 7.2811 E3.o = 10.13S4 E4,o = 13.1951 E5,o = 16.4364 
E3.1 = 16.6968 6 . 1  = m.1941 E5.l = 23.8355 

E ~ , J  = 31.6486 

where e A  denotes the Grassmann parity of the operator A and takes the value 0 
or 1, if A is a bosonic or fermionic operator respectively. A detailed discussion of 
the application of the BW algorithm to our model will be given in a forthcoming 
publication. Here we merely want to stress the fact that in our case all generalized 
structure functions of rank higher than one can be chosen to vanish. The generalized 
structure functions appear in the B I T  algorithm as coefficients in the expansion of the 
generators of the (generalized) constraint algebras into a '7%-normal-ordered series 
of powers or' the ghost operators [GiGj. Fbr systems with oniy firstxiass constraints 
it is stated in [ll] that all structure functions of rank higher than one vanish, if the 
algebra of the constraints is a true algebra, i.e. when their structure coefficients (see 
(1)) are actually true constants. Up to now there is no such statement known to the 
authors in the presence of second-class constraints. But a similar rule also seems to 
be valid, if the generalized algebra of the second class constraints involves only true 

so-called unitarizing Hamiltonian If (that means that the corresponding S-matrix is 
unitary) together with a BW-BRST charge n: 

H = H " ( q i , ~ , p i , p , ) + C r ; ' , ( ~ , + l ) ~ ) ~  + X ~ & ( ~ ) I - C Z ) ~  

mns!an!s (for a f.r!her examp!e see ref: [20!): The nw a!gorithm ends up with the 

2 4 

k = l  k = l  

2 2 

t X ' p p  + x'7r'+ C( A; T, + x: 7r; ) + PfP' + EC'+ (Pb'Pb' + CZCZ) 
0 = l  0 = l  
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with 

x' = P x;' = P 3  x;' = 92 

k times 

The Tu are the new effectively first-class constraints 

= T;' + 2(v1 - E * )  T2 = T;' - 2(t, + q 2 ) .  (14) 
It is pointed out in [7] that the theory does not depend on a suitable choice of 
the gauge functions x. The selection of the physical states of the system is enabled 
through the existence of a nilpotent fermionic BW-BRST charge R, which commutes 
with H: 

and by which physical states are annihilated: 

R I phys) = 0. (16) 
Since R is nilpotent, every state I+) = R I any state) should be a physical one. 
However, R is also Hermitian, so that these states have zero norm and, for R 
commuting with H, they can be factored out of the physical sector of the Hibert 
space [ll]: 

R I any state) # Iphys). (17) 
The two conditions (16) and (17) completely define the set of physical states of the 
theory. In this sense the system (H, R) represents the quantum mechanical version of 
the classical constrained system (H,, T', T;', T;'). Since fermionic operators have no 
effect on bosonic states and vice versa, it is clear by inspection that according to (16) 
all terms in the last two lines of H in (13) have to vanish acting on a physical state. 
In order to see how the restriction of the Hilbert space due to the new effectively 
first-class constraints Tu (14) works, it is useful to perform a unitaly transformation 
leading to new variables 

Q2 = (42  + q 3 ) I A  

Q3 = (42  - g d / J Z  

p2 = (PZ + P ~ ) / A  

p 3  = (PZ - ~ 3 l f J Z  

(18) 

by which all other operators are unaltered resulting in 

H I phys) = { ; ( p i  + P:) t q; + 12q:Q: + 16Q; + $T: + :[I6 - ( ~ 2  + ~ 3 ) l T f  

~ ( ~ ~ - c , ) ~ : T : + ~ ( ~ c ~ - c ~ - ~ ~ ) Q : T : + I / J Z ( C ~ - C ~ ) Q ~ T : }  I phys). 

(19) 

Note, that this is just the Hamiltonian H ,  in (6) when Q, is replaced by T2 fa 
and P3 is replaced by Tl fa. Thus the purpose of the r-terms appearing in the 
unitarizing Hamiltonian (13) becomes obvious: they define the Hamiltonian in the 
enlarged Hilbert space in a way such that the new effectively first-class constraints T, 
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have the same physical effect on the enlarged Hilbert space as the original second- 
class constraints T'l have on the original one. This should hold regardless of the 
complexity of the r-terms. 

Applying (16) in (19) one finally gets 

H I phys) = [&pi + P i )  + qt + 12q:Q: + 16Q;] I phys) = H* I phys) . (20) 

Since the classical limit of a quantum mechanical theory is well defined, this shows 
that the constrained system ( H , Q )  (equation (13)) is the quantized version of the 
classical two-dimensional unconstrained system H* (equation (20)). Thus the energy 
eigenvalues of ( H , Q )  are given by the EBK quantization of H* carried out above 
(11). An interesting question is related to the second classical constant of motion 
F (8): is it still a conserved quantity in the quantum mechanical system H*? For 
a general system (Hamiltonian IC, constant of motion I, {K, I) = 0) the answer 
is highly non-trivial because due to the mixing of coordinates and momenta in I 
(and eventually in IC) there may appear additional terms in the commutator [li, I]. 
But for Hamiltonian systems of the form H = x i  pf + V(q) it has been stated 
by Hietarinta [14] that constants of motion, which are of at most second-order in 
the momenta, quantum mechanically do commute with the Hamiltonian (to see what 
,,.appc,m ,I, ULIICI CLIJGJ W L 1 3 " I L  ,'*,,. 111 LllU W,,>I"C.,4L,U,, L l K  y"alll"lil UpCI'aLUI 

corresponding to a classical quantity must be defined through any admissible operator 
ordering rule, e.g. the Weyl rule: 

I."""̂"̂ :.. ,..L..- _^^^ ^^..^..I. r 1 4 1 ,  I.. *L:- ..-..":An-".:-.. .L- ...__- ---- ".-- 

1 
(p'q'),  all orderings of p and q .  (Y) 

Therefore one finds 

KF)W3(H*)Wl = o  (21) 

and 

K ~ ) i . V 7 ( ~ o ) w l =  ( { F > H " } ) W .  (22) 

In general there is no definite way to relate a quantum operator to a given classical 
quantity. But once quantum and classical dynamics do correspond (as in (22)) the 
BFV algorithm seems to preserve this correspondence. The remarkable fact is that 
the influence of constraints on a quantum system is treated within the BFV algotrithm 
without any ambiguity in operator ordering and under full conservation of relativistic 
covariance making the theory applicable to a wide range of problems (see e.g. [20- 
U]). Apart from its applicability B N  quantization provides a useful tool to get some 
more insight into that what we have called the quantum mechanical constrained 
nature of a system. For future work it would be interesting to investigate how the 
non-integrable system (i.e. Ho without constraints) is quantum mechanically related 
to that with constraints. 

The authors would like to thank the referee for the suggestion to investigate the 
second constant of motion on the quantum level. 
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