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Abstract. In this letter we discuss a non-integrable system of three coupled anharmonic
oscillators with certain constraints, so that it is transformed into an integrable one. After
having quantized the system with constraints and the classically equivalent unconstrained
integrable system using the BFV algorithm and the EBK quantization method, respectively,
the equivalence of the two quantization procedures is shown by explicitly performing the
reduction to the physical subspace on the quantum jevel.

The interest in constrained systems iS due to the fact that they can be related to
systems with a local gauge invariance since both are described by singular Lagrangians.
The freedom to choose a gauge is intimately related to the existence of unphysical
degrees of freedom making the quantization of such systems extremely difficult. This
results from the fact that by fixing the gauge in order to get rid of the unphysical
modes one may destroy the relativistic covariance of the theory (see e.g. [1]).

In order to introduce the topic and to fix the notation we give a brief sketch
of the most important contributions to the quantization of systems with constraints.
According to Dirac we call a constraint T, first class, if its Poisson brackets (denoted
in the following as {, }) with all the other constraints vanish at least weakly, that is

{T,, Ty} = CJ4T, for all 3 and ~ (1)

where the C7; are called the structure coefficients, which may depend on the phase
space variables. Constraints for which (1) does not hold are called second class.

The efforts to quantize systems with constraints, started with the work of Dirac in
1950 {2,3]. In Dirac’s canonical quantization method the Poisson brackets of classicai
mechanics are replaced by quantum commutators (denoted in the following as [,]).
Subsequently the quantum analogues T, of the classical first-class constraints T, are
imposed as quantum operators on the physical states:

{A, B} —~i[4, B] T, | phys) = 0. 2

*

One of the difficulties arising in this quantization procedure is that the first-class
character of the constraints is not necessarily preserved on the quantum level, ie.

{T,,Tp} = CL,T, # [T.. T3] = C1,T, 3
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due to the fact that the structure coeflicients C] ; become operator-valued. Obviously
the problem turns out to be even more severe, if second class constraints are
considered. One way to circumvent this lies in using Dirac brackets instead of Poisson
brackets, since by definition the Dirac brackets of all constraints with one another
vanish strongly. But among other reasons operator-ordering problems prevent the
general applicability of the method (cf [4]).

Another approach proposed by Faddeev [5] consists in extracting first the true,
gauge-invariant degrees of freedom of the theory with the help of additional gauge
constraints §£2_, called subsidary conditions. In a second step one performs a
path-integral quantization, where &-functions of both the original and the gauge
constraints occuring in the measure determine the restriction to the physical paths.
This formalism was generalized by Senjanovi¢ [6] to systems including second-class
constraints. The main disadvantage of this quantization procedure is the appearance
of the constraints in the measure of the path integral destroying the relativistic
covariance of the theory.

In order to overcome the problems in quantizing systems with constraints Batalin,
Fradkin and Vilkovisky (BFV) developed an operator quantization method, which
neither depends on operator ordering nor fails in vielding a non-unitary or relativistic
non-covariant S-matrix {7-10]. An excellent review of the BFv approach is given
by Henneaux {11]. The main property of the method is that on the one hand the
phase space is enlarged to permit relativistic covariance by treating the Lagrange
parameters as dynamical variables, and on the other hand the number of physical
degrees of freedom is reduced through the introduction of ghost variables obeying
the opposite quantum statistic as the original variables and thus, loosley speaking,
counting as negative degrees of freedom [4, 11].

BFV quantization provides a powerful tool to quantize a system with constraints
preserving its constrained nature on the quantum level. In order to test this method
and to get a somewhat deeper understanding we demonstrate in a first step for a
simple model how the restriction of the Hilbert space in the BFv algorithm works and
how it is related to the classical case. The essential property of our system will be that
classically the imposion of a constraint causes it to turn from a non-integrable system
to an integrable one thus becoming exactly solvable. We can therefore quantize the
system directly and compatre the two ways of quantization. The system considered
consists of three coupled one-dimensional quartic oscillators with a constramt T and
the Lagrangian

L=1a+d?+ 6% - V(g)— uT(q) )
with
V(g) = qf + c07 + c303 + il + (24— ¢)qiqs + [64 - (c; + cy)laial
and
T(Q) =g,

In order to arrive at a Hamiltonian formulation of the problem, we forget about
the constraint and interpret the Lagrange parameter u as a dynamical variable
with canonical conjugated momentum p,. A Legendre transformation in the eight-
dimensional phase space formally yields

H=1pt+pi+p) +up, +V(a)+1T(q)
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and
_ 8L |
szp'u = *3;1 =0

where T, is now a primary constraint arising through the absence of a kinetic term
belonging to the dynamical variable 4 in (4). Since the Poisson bracket of T, with

"H does not vanish, the demand on T, p to be zero for all times leads to a secondary
constraint, The so-called Dirac-Bergmann algorithm [3,4, 12] describes how this
secondary constraint (and eventually tertiary constraints, etc) are to be handled in
order to arrive at a new Hamiltonian H, together with a complete set of constraints,
that is each having vanishing Poisson brackets with ;. In our case these are a
first-class constraint (7" = T;) and two second-class constraints (7}, a = 1,2):

Hy= 3(p} + pi+p}) + iip, + Vi(q) )
with
Vol@) = af + (25~ ¢3)q3 + 303 + (24— ¢,) (¢} + a3) + [64 — (c; + 3)ladd]
+{&; ~ &) Glarm
T =p, '=a-a ' =p,~ps
{T', Hy} =0={T",T} {73, Hy} =0
but

{T;',Tg}:Zéaﬁ a,8=1,2.

In our simple example the reduction of the phase space can be done cxplicitly by
mrrying out the canonical transformation (Q;,M,Pn py.) - (Qis- Q.us Pi, Pp)s =
1,...,3, generated by

‘ 1 1
52Q1Pl+ﬂPu+E(Pz+P3)Q2+E(PZ—P3)‘I3

which yields '

Hy=§(P} + P} + P1)+ Q,P, + Q] +16Q3 + [16 ~ (c; — ;)] Q3 + 12Q7 Q3
+2(18 - c)QIQ3 + (53— ¢, - 32)QF Q3 + 25~ ¢,),Q3 ()

T =P, TW=Q, T{=A~.

On the physical subspace the constraints are valid for all times and therefore the
system is described by

H* = 3(PE+ P}) + Qi+ 12Q}Q} + 16Q3 Y
which is integrable [13] due to the existence of a second integral of the motion

F=-Q,P} + QP P, + Q1Q,(8Q% + 4Q}). ®
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So far the classical system is considered and our calculation shows that the system
H, in eight-dimensional phase space together with the constraints 7', T} and T, is
equivalent to the unconstrained system H* in four-dimensional phase space, reflecting
the fact that each first-class constraint reduces the dimension of the phase space by
two and each second-class constraint reduces it by one.

Before we determine the quantum version of the constrained system H,, we want
to calculate the quantum mechanical energy eigenvalues of the unconstrained system
H*. This can be done using the Einstein-Brillouin—Keller (EBK) quantization rule

[15-17]
hod
Ik=h nk+T k'—'—'l,...,N (9)

for an N-dimensional integrable, but not necessarily separable system. The n, are
integers and the «, are the Maslov indices belonging to the kth irreducible closed
path by means of which the kth action variable I, is defined:

li=5=§ p@,F)dg  k=1,..,N. (10)
27 Yk

Here F is an N-dimensional vector containing the N constants of motion and
7, stands for the kth irreducible closed path on the N-torus [18]. For the two-
dimensional system H* the Maslov indices oy and «, are equal to 2 [19] and the
discrete energy values are given by

B, = H*(:IlsIZ) = H*[h(n; + 1), 8(n, + )] . an

Figure 1 shows the energy cigenvalues of the system I7* up to E = 100. There are
no lower eigenvalues for higher quantum numbers n,, n, since it can be shown that
3E(nk, n,)/ank > 0for k # l, k,l = 1,2.

With this result in mind we now turn to the original problem, i.e. the quantization
of the constraint system (5). As mentioned at the beginning, BFv quantization of
constrained systems requires the introduction of some extra degrees of freedom
including ghosts. In particular [8] for each of the constraints there is one (bosonic)
Lagrange multiplier A with conjugate momentum =, one (fermionic) cononical
conjugated ghost pair (C,P) and one (fermionic) anti-ghost pair (P,(). Furthermore,
since the construction of the gauge algebra of a constraint system strongly depends on
the first-class character of the constraints [8)], for each of the second-class constraints
being at hand one canonical conjugated pair of (bosonic) auxiliary variables (£, )
18 needed in order to convert the second-class constraints into effectively first-
class ones [10). Thus our enlarged phase space (X,I1} becomes 15-dimensional
=123, a=12):

2 = (Qi’”aA,9A23 :’C”P"CZ’P::)
I =(p;pu 7, ot PO PO

From now on all commutators are to be understood as supercommutators in the sense
of

[A,B] = AB - (~1)**® BA (12)
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E,, = 316486

n’ =1 o

Figure 1. The numerically exact eigenvalues of the system H* up to £ = 100 (i = 1).
The quantum numbers ny , k = 1,2, comespond to the kth irreducible closed path on
the 2-torus (see text}). Eigenvalues belonging to the same r, are connected by dotted lines
and ordered by increasing ny from the bottom to the top. The first values of By, n, are:

Eyp=4.6673 Ezp= 72811 E39=10.1354 Eso=13.1951 Esq= 16.4364
Ey1=16.6968 E4y=1201941 E;, = 23.8355
‘ Esy = 31.6486

where ¢, denotes the Grassmann parity of the operator A and takes the value 0
or 1, if A is a bosonic or fermionic operator respectively. A detailed discussion of
the application of the BFv algorithm to our model will be given in a forthcoming
publication. Here we merely want to stress the fact that in our case all generalized
structure functions of rank higher than one can be chosen to vanish. The generalized
structure functions appear in the BFv algorithm as coefficients in the expansion of the
generators of the (generalized) constraint algebras into a PC-normal-ordered series
of powers of the ghost operators [8-10]. For systems with only first-ciass constraints
it is stated in [11] that all structure functions of rank higher than one vanish, if the
algebra of the constraints is a true algebra, i.e. when their structure coefficients (see
(1)) are actually true constants. Up to now there is no such statement known to the
authors in the presence of second-class constraints. But a similar rule also seems to
be valid, if the generalized algebra of the second class constraints involves only true
constants (for a further example see ref. [20]). The BFV algorithm ends up with the
so-called unitarizing Hamiltonian / (that means that the corresponding $-matrix is
unitary) together with a BFV-BRST charge (2:

2 4
H = Hyq;,u,pisp,}+ Z T (& + )" + z P3(m - &)*
k=1 k=1
2 2
FNDAX T+ D (N Ty+Xamd )+ PP +CC+ Y (PaPa+Cich)

a=1 a=1
(13)
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with
X =pu Xi = Ps X2 = @
1
= FE[ .[Hu,Tg],Tg],...],T;’l.
k;;:es

The 7, are the new effectively first-class constraints
T=T'+Am-&) T=T-Ab+m). (14)

It is pointed out in [7] that the theory does not depend on a suitable choice of
the gauge functions x. The selection of the physical states of the system is enabled
through the existence of a nilpotent fermionic BFV—BRST charge (2, which commutes
with H:

2 .
Q=TC +n'P' + ) (T,Ch+ wiP) 2,0]=0 [H,Q]=0 (15)

a=}

and by which physical states are annihilated:
Q2| phys) =0. (16)

Since €2 is nilpotent, every state |y») = (2 | any state) should be a physical one.
However, Q is also Hermitian, so that these states have zero norm and, for
commuting with H, they can be factored out of the physical sector of the Hibert
space [11]:

Q | any state) # {phys). (17)

The two conditions (16) and (17) completely define the set of physical states of the
theory. In this sense the system (H, ) represents the quantum mechanical version of
the classical constrained system (H,, T, T}, T3}'). Since fermionic operators have no
effect on bosonic states and vice versa, it is clear by inspection that according to (16)
all terms in the Jast two lines of H in (13) have to vanish acting on a physical state.
In order to see how the restriction of the Hilbert space due to the new effectively
first-class constraints T, (14) works, it is useful to perform a unitary transformation
leading to new variables

Q:=(a:+ @)/V2 Py =(p,+p3)/V2
Qs&=((]';:—‘§!3)/\/i P3=(P2-P3]/\/2—

by which all other operators are unaltered resulting in
H | phys) = {3(p} + P}) + qi +12¢]QF +16Q% + 177 + {16 — (e + )] TY
+(18—c,) g} T+ §(Se3— ;= 32)QITT +1/V2(e3— 1) Q,T7} | phys) -
(19)
Note, that this is just the Hamiltonian H, in (6} when Q, is replaced by T,/v2
and P; is replaced by T;/v2. Thus the purpose of the I-terms appearing in the

unitarizing Hamiltonian (13) becomes obvious: they define the Hamiltonian in the
enlarged Hilbert space in a way such that the new effectively first-class constraints T,

(18)
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have the same physical effect on the enlarged Hilbert space as the original second-
class constraints T, have on the original one. This should hold regardless of the
complexity of the I'-terms.

Applying (16) in (19) one finally gets

H |phys) = [3(p? + P}) + qf + 12¢} Q% + 16Q%] | phys) = H™* | phys) . (20)

Since the classical limit of a quantum mechanical theory is well defined, this shows
that the constrained system (H,(2) (equation (13)) is the quantized version of the
classical two-dimensional unconstrained system H* (equation (20)). Thus the energy
eigenvalues of (/,Q) are given by the EBK quantization of H* carried out above
(11). An interesting question is related to the second classical constant of motion
F (8): is it still a conserved quantity in the quantum mechanical system H*? For
a general system (Hamiltonian K, constant of motion I, {K, I} = 0) the answer
is highly non-trivial because due to the mixing of coordinates and momenta in [
(and eventually in k') there may appear additional terms in the commutator [K, [].
But for Hamiltonian systems of the form H = %E’. p? + V(q) it has been stated
by Hietarinta [14] that constants of motion, which are of at most second-order in
the momenta, quantum mechanically do commute with the Hamiltonian (to see what
happens in other cases consult 114}) In ihis consideration the uanium Operaior
corresponding to a classical quantity must be defined through any admissible operator
ordering rule, e.g. the Weyl rule:

1 .
(¥ = -(;;—I—)-Zall orderings of p and q.

Therefore one finds

((F)Wa(H*)W]"_‘O (21)

and

[(Fyw.(Hy)w] = {F, HyDw - (22)

In general there is no definite way to relate a quantum operator to a given classical
quantity. But once quantum and classical dynamics do correspond (as in (22)) the
BFv algorithm seems to preserve this oorrespondence The remarkable fact is that
the influence of constraints on a quantum system is treated within the BFV algotrithm
without any ambiguity in operator ordermg and under full conservation of relativistic
covariance making the theory applicable to a wide range of problems (see e.g. [20-
23}). Apart from its applicability BFv quantization provides a useful tool to get some
more insight into that what we have called the quantum mechanical constrained
nature of a system. For future work it would be interesting to investigate how the
non-integrable system (i.e. H, without constraints) is quantum mechanically related
to that with constraints.

The authors would like to thank the referee for the suggestion to investigate the
second constant of motion on the quantum level.
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